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The central question. 
How can we deploy learning-based control policies on 
real-world hardware whose behaviors can be modeled 
and empirically verified against specifications?

Iterative and compositional reinforcement learning within a multifidelity sim-to-real pipeline

A summary of the approach: A framework to compose 
and model the outcomes of RL-based systems.
1. Construct a hierarchical high-level model to 

decompose tasks into subtasks.
2. Train and test subtask policies in a                

multifidelity sim-to-real pipeline.
3. Iteratively refine the high-level model.

User Inputs

Task specification &
performance requirements
E.g., Navigate to the goal location 
with a success probability of 0.95.

High-Level Model

Parameter synthesis problem

Example high-level model

Dynamics sim. Software-in-the-loop sim. Physical hardware

RL Algorithm

Algorithm Outputs

Subtask policy !!
1. Compositional policy
2. System guarantee

Subtasks
to train

Trained 
subpolicies Test autonomy stack Deploy on hardware

Compositional policy & system guarantee

Multifidelity Simulation Pipeline

Compositional RL systems trained in simulation 
lead to successful task completion on hardware.

The high-level model States defined by 
subtask entrance 
and exit conditions.

Actions represent 
subtasks.

Failure states 
represent failure 
of any subtask.

Success states 
represent overall 
task success.

Transition 
probabilities 
represent likelihood 
of subtask success.

Relating the high-level model to the environment
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Compositional system 
completes its task in 
training environment.

Dynamics sim.
• Physics-only simulation 

built in Unity.
• Fast simulation 

suitable for RL training.

Software-in-the-loop sim.
• Simulate policy interaction 

with ARL autonomy stack.
• Real-time simulation limits 

scale of data collection.

Physical hardware
• Policy maps observations 

directly to velocities.
• Limited opportunity for 

evaluations on hardware.
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The HLM parameter synthesis problem 
corresponds to the automatic 
decomposition of task specifications into 
subtask specifications.

Composition Composite 
controller

Subtask 
controllers

Independently 
certify subsystems

Certification for 
composite system

Necessary 
subtask specifications

System-level 
task specification

The framework automatically adapts to environment 
changes and it simplifies the process of targeting and 
addressing sim-to-real errors.

An obstacle blocks 
the previously 
planned path.

Automatic replanning 
initially fails subtask 8 
on physical hardware.

Targeted re-training of 
specific subtasks 

leads to task success.
Subtask 0 1 2 3 4 5

Required 1.0 0.98 1.0 1.0 0.95 0.97
Estimated 1.0 0.98 1.0 1.0 0.90 0.97

Subtask Success Probabilities

Deployed subtask

Distance to subtask goal

Time [s]

RealSimulated

The framework automatically selects 
underperforming subtask policies for further training.
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