A Multifidelity Sim-to-Real Pipeline for Verifiable and Compositional Reinforcement Learning

Cyrus Neary¹, Christian Ellis², Aryaman Singh Samyal¹, Craig Lennon³, and Ufuk Topcu¹

¹The University of Texas at Austin, ²The University of Massachusetts Dartmouth, ³U.S. Army Research Lab

The central question.

How can we deploy learning-based control policies on real-world hardware whose behaviors can be modeled and empirically verified against specifications?

A summary of the approach: A framework to compose and model the outcomes of RL-based systems.

- 1. Construct a hierarchical *high-level model* to decompose tasks into subtasks.
- 2. Train and test subtask policies in a multifidelity sim-to-real pipeline.
- 3. Iteratively refine the high-level model.

Iterative and compositional reinforcement learning within a multifidelity sim-to-real pipeline

Compositional RL systems trained in simulation lead to successful task completion on hardware.

Time [s]

The framework automatically adapts to environment changes and it simplifies the process of targeting and addressing sim-to-real errors.

The framework automatically selects underperforming subtask policies for further training.

Subtask Success Probabilities

Subtask	0	1	2	3	4	5
Required	1.0	0.98	1.0	1.0	0.95	0.97
Estimated	1.0	0.98	1.0	1.0	0.90	0.97

Automatic replanning An obstacle blocks initially fails subtask 8 the previously planned path.

Targeted re-training of specific subtasks on physical hardware. leads to task success.

Presentation session: AI-Enabled Robotics 1. NTG6 - 13:30 to 15:00. Contact: cneary@utexas.edu